GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4755
Further Concepts for Advanced Mathematics (FP1)

Mark Scheme for June 2010

Qu	Answer	Mark	Comment
Section A			
1	$\begin{aligned} & 4 x^{2}-16 x+C \equiv A\left(x^{2}+2 B x+B^{2}\right)+2 \\ & \Leftrightarrow 4 x^{2}-16 x+C \equiv A x^{2}+2 A B x+A B^{2}+2 \\ & \Leftrightarrow A=4, B=-2, C=18 \end{aligned}$	B1 M1 A2, 1 [4]	$A=4$ Attempt to expand RHS or other valid method (may be implied) 1 mark each for B and C, c.a.o.
2(i) 2(ii)	$\begin{aligned} & 2 x-5 y=9 \\ & 3 x+7 y=-1 \\ & \mathbf{M}^{-1}=\frac{1}{29}\left(\begin{array}{cc} 7 & 5 \\ -3 & 2 \end{array}\right) \end{aligned}$ $\begin{aligned} & \frac{1}{29}\left(\begin{array}{cc} 7 & 5 \\ -3 & 2 \end{array}\right)\binom{9}{-1}=\frac{1}{29}\binom{58}{-29} \\ & \Rightarrow x=2, y=-1 \end{aligned}$	B1 B1 [2] M1 A1 [2] M1 A1(ft) [2]	Divide by determinant c.a.o. Pre-multiply by their inverse For both
3	$\begin{aligned} & z=1-2 \mathrm{j} \\ & 1+2 \mathrm{j}+1-2 \mathrm{j}+\alpha=\frac{1}{2} \\ & \Rightarrow \alpha=-\frac{3}{2} \\ & \frac{-k}{2}=-\frac{3}{2}(1-2 \mathrm{j})(1+2 \mathrm{j})=-\frac{15}{2} \end{aligned}$ $k=15$ OR $\begin{aligned} & (z-(1+2 \mathrm{j}))(z-(1-2 \mathrm{j}))=z^{2}-2 z+5 \\ & 2 z^{3}-z^{2}+4 z+k=\left(z^{2}-2 z+5\right)(2 z+3) \\ & \alpha=\frac{-3}{2} \\ & k=15 \end{aligned}$	B1 M1 A1 M1 A1(ft) A1 [6] M1 A1 M1 A1(ft) A1 [6]	Valid attempt to use sum of roots, or other valid method c.a.o. Valid attempt to use product of roots, or other valid method Correct equation - can be implied c.a.o. Multiplying correct factors Correct quadratic, c.a.o. Attempt to find linear factor c.a.o.

8(i)	$\begin{aligned} & \arg \alpha=\frac{\pi}{6},\|\alpha\|=2 \\ & \arg \beta=\frac{\pi}{2},\|\beta\|=3 \end{aligned}$	B1 B1 B1 [3]	Modulus of α Argument of α (allow 30°) Both modulus and argument of β (allow 90°)
8(ii)	$\alpha \beta=(\sqrt{3}+j) 3 j=-3+3 \sqrt{3} j$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of $\mathrm{j}^{2}=-1$ Correct
	$\begin{aligned} & \frac{\beta}{\alpha}=\frac{3 \mathrm{j}}{\sqrt{3}+\mathrm{j}}=\frac{3 \mathrm{j}(\sqrt{3}-\mathrm{j})}{(\sqrt{3}+\mathrm{j})(\sqrt{3}-\mathrm{j})} \\ & =\frac{3+3 \sqrt{3} \mathrm{j}}{4}=\frac{3}{4}+\frac{3 \sqrt{3} \mathrm{j}}{4} \end{aligned}$	M1 A1 A1 [5]	Correct use of conjugate of denominator Denominator $=4$ All correct
8(iii)		M1 A1(ft) [2]	Argand diagram with at least one correct point Correct relative positions with appropriate labelling

Qu	Answer	Mark	Comment
Section B (continued)			
9(i)	P is a rotation through 90 degrees about the	B1	Rotation about origin
	origin in a clockwise direction.	B1	90 degrees clockwise, or equivalent
	Q is a stretch factor 2 parallel to the x-axis	B1	Stretch factor 2
		B1	Parallel to the x-axis
9(ii)		[4]	
	$\mathbf{Q P}=\left(\begin{array}{ll} 2 & 0 \\ 0 & 1 \end{array}\right)\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)=\left(\begin{array}{cc} 0 & 2 \\ -1 & 0 \end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ [2]	Correct order c.a.o.
9(iii)	$\left(\begin{array}{cc} 0 & 2 \\ -1 & 0 \end{array}\right)\left(\begin{array}{lll} 2 & 1 & 3 \\ 0 & 2 & 1 \end{array}\right)=\left(\begin{array}{ccc} 0 & 4 & 2 \\ -2 & -1 & -3 \end{array}\right)$	M1	Pre-multiply by their $\mathbf{Q P}$ - may be implied
	$A^{\prime}=(0,-2), B^{\prime}=(4,-1), C^{\prime}=(2,-3)$	$\begin{array}{r} \mathrm{A} 1(\mathrm{ft}) \\ {[2]} \end{array}$	For all three points
9(iv)	$\mathbf{R}=\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & {[2]} \end{aligned}$	One for each correct column
9(v)	$\mathbf{R Q P}=\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & 2 \\ -1 & 0 \end{array}\right)=\left(\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array}\right)$	M1	Multiplication of their matrices in correct order
		A1(ft)	
	$(\mathbf{R Q P})^{-1}=\frac{-1}{2}\left(\begin{array}{cc} -2 & 0 \\ 0 & 1 \end{array}\right)$	M1	Attempt to calculate inverse of their RQP
		A1 [4]	c.a.o.
Section B Total: 36			
			Total: 72

